Disc Erosion Machine for PCD Tipped Tools

The Machine Tool Industry Is Booming Globally

Though high-speed machining, be it milling or turning, is one of the hottest topics today, there are many ways to define what it means. Some say it's spindle speeds running over some specified minimum rpm. Others define it as high cutting speeds or feeds, or a combination of the two. Whatever the definition, obviously it's not just a matter of tooling up CNCs with the right cutting tools, then ramping them up, otherwise we'd have nothing to talk about.

We prefer to think in terms of productivity, so high-productivity machining (HPM) is a term we're suggesting for when you optimize both speeds and feeds up to a point of diminishing returns, whether or not those speeds and feeds meet someone else's definition of "high speed machining." The rationale is that higher output is only beneficial if the end result is good parts, minimum rework and near-zero scrap. You also want to be sure you don't get the output at the expense of early retirement of your expensive CNC center due to excessive wear and tear.

There are many factors to consider before you decide whether you are a candidate for HPM. A lot depends on your application, workpiece, material, depth of cut, workload, and so on. The main application areas for HPM today include injection and blow dies and molds, forging dies, prototyping dies and electrodes.

Users have reported successes using materials such as high-alloy tool steels, heat resistant superalloys, bimetal compositions, stainless steel alloys, aluminum, compact graphite iron and copper. Principal beneficiaries of HPM are the aerospace, automotive, electric/electronic and defense industries. As machine shops become more savvy and comfortable with HPM, applications will undoubtedly expand quickly.
The purpose of this article is to sort out "friendly" conditions for HPM, then cover the prerequisites in milling tool selection to get maximum output from CNC machining centers.

What are the advantages of HPM?

When you review these benefits, you'll probably question why the HPM fever hasn't caught on over a larger cross-section of industries. To begin answering, consider the life of wheel bearings on a sports-coupe driven at city speeds. Then, compare that to the life of wheel bearings on the same car driven at 200 mph on a high-speed highway. Which will last longer? The analogy to HPM is clear, and the moral is that the advantages also bring disadvantages. So, a number of issues must be addressed. Here are some of them:

Here's what's required on the process side.

Contrary to popular belief, machine tool capabilities are not ahead of tooling where performance is concerned. Both solid and indexable tooling for HPM is already available today. However, it is a question of selecting the right holder, insert, and tool/machine interface. Here are some guidelines:

Sensitive applications, such as milling of thin-walled or hard metal workpieces, can greatly benefit from HPM. Reason is that tool/workpiece engagement time is shorter than with conventional milling, therefore cutting pressure and forces are much reduced (Figures 4 and 5). When feed rates are higher than the time it takes to propagate heat, there is less heat produced in the workpiece (Figure 6). Less heat, in turn, means lower risk of distortion. This is especially important when working with thin walls or hard metals.

Can dry milling also be extended to HPM? For the most part, the same benefits obtainable from turning off the cutting fluid in conventional milling Machining Carbide Inserts applications also apply to HPM. In general, when milling, cutting fluid can do more harm than good, because it increases the thermal shock on cutting edges. To a large degree, most of the cutting fluid converts to steam anyway when it hits the hot cutting zone, so the cooling benefit is lost. Eliminating liquid coolant can boost tool life 25 to 50 percent in many cases and save about 15 to 20 percent in coolant and disposal costs.

However, there are a few exceptions to the cutting fluid "rule" for HPM. Dry machining is not recommended in these situations:

In instances when it is necessary to apply copious amounts of cutting fluid, select a cemented carbide insert with a tough substrate and multilayer coatings. The preferred alternative to liquid coolant is compressed air and oil mist under high pressure Carbide Turning Inserts as the second choice. With cermet, ceramic or cubic boron nitride inserts, coolant should not be considered an option at all.

The key to optimizing capacity lies in keeping big-ticket machinery working, in cutting at optimum rates for the material and, above all, in minimizing idle machine time. It is best to look at the total productivity picture to see the value of optimizing speeds, as well as feeds, without losing part quality or incurring rework or scrap.

Tooling is not an obstacle for those who want to implement high-productivity machining. Rather, users have to apply different tool selection criteria and machining techniques than with conventional milling. Any of today's machining centers will perform as well as its tooling allows. And you can control which tooling goes on that machine.

About the authors. Andy Pitsker is Product Manager Tooling Systems and Steve Piscopo is Product Manager Milling Tools with Sandvik Coromant in Fair Lawn, New Jersey. They can be reached at (201) 794-5000, fax (201) 794-5217.

The Carbide Inserts Website: https://www.aliexpress.com/item/1005005954890402.html

Ingen kommentarer endnu

Der er endnu ingen kommentarer til indlægget. Hvis du synes indlægget er interessant, så vær den første til at kommentere på indlægget.

Skriv et svar

Skriv et svar

Din e-mailadresse vil ikke blive publiceret. Krævede felter er markeret med *

 

Næste indlæg

Disc Erosion Machine for PCD Tipped Tools